Programme	B. Sc. Mathe	B. Sc. Mathematics Honours					
Course Code	MAT1CJ101	l / MAT1MN100					
Course Title	DIFFEREN	TIAL CALCULUS					
Type of Course	Major						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Basic knowle Numbers (0-	edge of Sets, Relations and F 99 level).	unctions, Scho	ol Level Algebra and Real			
Course Summary	The course c limits, contir derivatives, a limits, findin studies in ca	The course covers fundamental concepts in calculus, including functions, shifting of graphs, limits, continuity, differentiation, extreme values, the Mean Value Theorem, graphing with derivatives, and limits at infinity with asymptotes. Students learn techniques for evaluating limits, finding extrema, and graphing functions using derivatives, preparing them for further studies in calculus and related fields.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Compute domain, range of various functions and limits of functions also draw shifted graphs.	Ар	Р	Internal Exam/ Assignment/ Seminar/Viva/End SemExam
CO2	Apply the concepts of continuity and differentiability of a function to solve mathematical problems	Ар	Р	Internal Exam/Assignment/ Seminar/Viva/ End SemExam

CO3	Compute derivatives of different functions,Linearization and differentials.	Ар	Р	Internal Exam/Assignment/ Seminar/Viva/ End SemExam		
CO4	Apply first and second derivatives and related theorems to find extrema of functions.	Ар	Р	Internal Exam/Assignment/ Seminar/Viva/ End SemExam		
CO5	Sketch the graph of functions by computing critical points and asymptotes.	Ар	Р	Internal Exam/Assignment/ Seminar/Viva/ End SemExam		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)						

Textbook	Calculus and Analytic Geometry, 9 th Edition, George B. Thomas, Jr. Ross L. Finney, Pearson Publications, 2010, ISBN: 978-8174906168.							
Module	Unit	Content	Hrs	Marks				
			(40+12)	Ext: 70				
I		Module I	12	Min.15				
	1	Preliminaries: Section 3 - Functions						
	2	Preliminaries: Section 4 - Shifting Graphs.						
	3	Section 1.1-Rates of Change and Limits - Limits of Function Values onwards.						
	4	Section 1.2 - Rules for Finding Limits. Topics up to and including Example 3.						
	5	Section 1.2 - Rules for Finding Limits. Rest of the section.						

	6	Section 1.4- Extensions of the Limit Concept. Topics up to and including Example 6.		
II		Module II	15	Min.15
	7	Section 1.5 - Continuity.		
	8	Section 2.1 - The Derivative of a Function (The topic Graphing f' from estimated values is optional).		
	9	Section 2.2 - Differentiation Rules.		
	10	Section 2.3 - Rates of Change. Topics up to and including Example 5.		
	11	Section 2.5 - The Chain Rule. Topics up to and including Example 6.		
	12	Section 2.6- Implicit Differentiation and Rational Exponents. Topics up to and including Example 5.		
III		Module III	11	Min.15
	13	Section 3.1 - Extreme Values of Functions. Topics up to Finding Extrema.		
	14	Section 3.1 - Extreme Values of Functions- Topics from Finding Extrema onwards.		
	15	Section 3.2 - The Mean Value Theorem -Topics up to and including Example 4. (Proof of Theorem 3 is optional).		
	16	Section 3.2 - The Mean Value Theorem- Increasing Functions and Decreasing Functions		
	17	Section 3.3 - The First Derivative Test for Local Extreme Values.		

	Module IV	10	Min.15			
18	Section 3.4 - Graphing with y' and y'' - Topics up to and including Example 5.					
19	Section 3.4 - Graphing with y' and y''- Topics from the Second Derivative Test for Local Extreme Values onwards.					
20	Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms Topics up to and including Summary for Rational Functions.					
21	Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms- Topics from Horizontal and Vertical Asymptotes up to and including Example 12.					
22	Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms-Topics from Graphing with Asymptotes and Dominant Terms onwards.					
	Module V (Open Ended)	12				
Trigo Defin onwa Funct Diffe	nometric Functions, Tangent Values and Formal itions of Limits (From Precise Definition of limits rds up to Example 6), Derivatives of Trigonometric ions (Proofs are optional), Linearization and rentials.					
8						
 Howard Anton, Biven, & Stephen Davis, Calculus, 7th Ed., Wiley India 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Ed, John Wiley & Sons. 3. Robert T Smith and Roland B Minton, Calculus, 4th Ed. McGraw-Hill Companies 4. Soo T Tan, Calculus, 9th Ed.Brooks/Cole Pub Co. Tom M. Apostol, Calculus, Vol 1: One Variable Calculus with an Introduction to Linear Algebra, 2nd Ed. John Wiley & Sons. 						
ael Var s://vout	n Biezen Calculus Lectures: u.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG					
	18 19 20 21 22 Trigo Defin onwa Funct Differ ard Ant xed Engi , Calcul M. Apo Ed, John nael Var ps://yout	Module IV 18 Section 3.4 - Graphing with y' and y'' - Topics up to and including Example 5. 19 Section 3.4 - Graphing with y' and y'' - Topics from the Second Derivative Test for Local Extreme Values onwards. 20 Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms Topics up to and including Summary for Rational Functions. 21 Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms- Topics from Horizontal and Vertical Asymptotes up to and including Example 12. 22 Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms-Topics from Graphing with Asymptotes and Dominant Terms onwards. Module V (Open Ended) Trigonometric Functions, Tangent Values and Formal Definitions of Limits (From Precise Definition of limits onwards up to Example 6), Derivatives of Trigonometric Functions (Proofs are optional), Linearization and Differentials. <i>a</i> and Anton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley India 2. Erred Engineering Mathematics, 10 th Ed, John Wiley & Sons. 3. Robert T S, Calculus, 4 th Ed. McGraw-Hill Companies 4. Soo T Tan, Calculus, 9 th EM. Apostol, Calculus, Vol 1: One Variable Calculus with an Introductio Ed, John Wiley & Sons. mael Van Biezen Calculus Lectures: ss://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG	Module IV 10 18 Section 3.4 - Graphing with y' and y'' - Topics up to and including Example 5. 19 19 Section 3.4 - Graphing with y' and y'' - Topics from the Second Derivative Test for Local Extreme Values onwards. 20 20 Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms Topics up to and including Summary for Rational Functions. 21 21 Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms- Topics from Horizontal and Vertical Asymptotes up to and including Example 12. 22 22 Section 3.5 - Limits as x → ±∞, Asymptotes and Dominant Terms-Topics from Graphing with Asymptotes and Dominant Terms onwards. 12 Trigonometric Functions, Tangent Values and Formal Definitions of Limits (From Precise Definition of limits onwards up to Example 6), Derivatives of Trigonometric Functions (Proofs are optional), Linearization and Differentials. 12 ard Anton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley India 2. Erwin Kreysz red Engineering Mathematics, 10 th Ed, John Wiley & Sons. 3. Robert T Smith and R , Calculus, 4 th Ed. McGraw-Hill Companies 4. Soo T Tan, Calculus, 9 th Ed.Brooks/6 M. Apostol, Calculus, Vol 1: One Variable Calculus with an Introduction to Linear Ed, John Wiley & Sons. Linear Linear Ed, John Wiley & Sons. aael Van Biezen Calculus Lectures: ts://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG			

*Optional topics are exempted for end semester examination

****70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.**

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	0	2	1	3	0	2	1	3	1	3
CO 2	3	3	2	0	2	1	3	0	2	1	3	0	3
CO 3	3	3	2	2	2	1	3	0	2	1	3	1	3
CO 4	3	3	2	0	3	2	3	0	2	1	3	0	3
CO 5	3	3	2	2	3	2	3	0	2	2	3	0	3

Programme	B. Sc. Mathem	natics Honours				
Course Code	MAT1CJ102					
Course Title	ELEMENTA	RY NUMBER THEORY				
Type of Course	Major					
Semester	Ι					
Academic Level	300-399					
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours		
	4	4	-	60		
Pre-requisites	Arithmetic of	integers, basic set theory and	l proof techniques.			
Course Summary	We start numbe for computing i prove the Funda sieve of Eratost Remainder theo Theorem, Euler	We start number theory with the division algorithm, g.c.d., and the Euclidean algorithm for computing it, essential for solving Diophantine equations like $ax + by = c$. We then prove the Fundamental Theorem of Arithmetic, discuss the infinitude of primes and the sieve of Eratosthenes. Following that, we cover Linear Congruences, the Chinese Remainder theorem, and Fermat's Little Theorem. Finally, we explore Wilson's Theorem, Euler's Phi Function, and Euler's Theorem.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Apply the division algorithm and Euclidean algorithm to compute greatest common divisors and solve related divisibility problems.	Ap	С	Internal Exam/ Assignment/ Seminar/Viva/End Sem Exam			
CO2	Solve Diophantine equations for integer solutions, deduce prime factorization through the fundamental theorem of arithmetic, and identify prime numbers using the sieve of Eratosthenes.	Ap	С	Internal Exam/Assignment/ Seminar/Viva/ End Sem Exam			
CO3	Apply the properties of congruence and the Chinese Remainder Theorem to solve systems of linear congruences.	Ap	С	Internal Exam/Assignment/ Seminar/Viva/ End Sem Exam			
CO4	Apply Wilson's theorem to solve problems	Ар	С	Internal Exam/Assignment/ Seminar/Viva/ End Sem Exam			
CO5	Apply Euler's theorem to solve problems	Ap	С	Internal Exam/Assignment/ Seminar/Viva/ End Sem Exam			
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Textbook	Elementary Number Theory, David Burton, M, Seventh Edition, Mcgraw – Hill (2007).						
Module	Unit	Content	Hrs (60)	External Marks (70)			
Ι		Module I					
	1	Section 2.2 The division algorithm (proof of theorem 2.1 omitted).					
	2	Section 2.3 The greatest common divisor – up to and including theorem 2.3 and its corollary.	12	Min.15			
	3	Section 2.3 The greatest common divisor - All topics from definition 2.3 onwards.					
	4	Section 2.4 The Euclidean algorithm - up to Theorem 2.7.					
	5	Section 2.4 The Euclidean algorithm - All topics from Theorem 2.7 onwards.					
II		Module II					
	6	Section 2.5 The Diophantine equation $ax+by = c$ up to and including Theorem 2.9.					
	7	Section 2.5 - All topics from Example 2.4 onwards.					
	8	Section 3.1 The fundamental theorem of arithmetic – up to Theorem 3.2.	11	Min.15			
	9	Section 3.1 The fundamental theorem of arithmetic – All topics from Theorem 3.2 onwards.					
	10	Section 3.2 The sieve of Eratosthenes (up to and including theorem 3.4 only)					

III		Module III		
	11	Section 4.2 Basic properties of congruence - up to Theorem 4.2.		
	12	Section 4.2 Basic properties of congruence - All topics from Theorem 4.2 onwards.		
	13	Section 4.4 Linear congruences and the Chinese remainder theorem – up to Theorem 4.8.		
	14	Section 4.4 Linear congruences and the Chinese remainder theorem - All Topics from Theorem 4.8 (proof of Theorem 4.8 omitted).	13	Min.15
	 15 Section 5.2 Fermat's little theorem and pseudo primes - up to Lemma. (omit a different proof for Fermat's theorem) 			
	16	Section 5.2 Fermat's little theorem and pseudo primes - All topics from Lemma onwards.		
IV		Module IV		
	17	Section 5.3 Wilson's theorem - Up to Theorem 5.5.		
	18	Section 5.3 Wilson's theorem - All topics from Theorem 5.5 onwards.	12	Min.15
	19	Section 7.2 Euler's phi-function - up to Lemma.		
	20	Section 7.2 Euler's phi-function - All Topics from Lemma onwards. (proof of Theorem 7.2 omitted).		
	21	Section 7.3 Euler's theorem. (Second proof of Euler's theorem omitted).		
	22	Section 7.4 Some properties of the phi-function (Proof of Theorem 7.8 omitted).		

V	Module V (Open Ended)					
	Proof of Theorem 4.8. Chinese Remainder Theorem and remaining portions of Section 4.4	12				
	Section 6.1 The sum and the number of divisors Linear congruences and the Chinese remainder theorem.					
	Section 6.3 The Greatest Integer Function - up to Theorem 6.11.					
References						
1. Rosen, Kenneth H. Elementary number theory. London: Pearson Education, 2011.						
2. Eynden, Charles Vanden. Elementary number theory. Waveland Press, 2006.						

- 3. Gehring, F. W., and P. R. Halmos. Graduate Texts in Mathematics, 1976.
- 4. Hsiung, C. Y. Elementary theory of numbers. World Scientific, 1992.
- 5. Hoffman P., *The man who loved only numbers: The story of Paul Erdös and the search for mathematical truth*, Little Brown & Company, 1999.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	1	0	0	0	3	0	2	1	3	0	1
CO 2	2	3	3	0	1	0	3	0	2	1	3	0	1
CO 3	2	3	2	0	0	0	3	0	2	1	3	0	2
CO4	2	3	2	0	0	0	3	0	2	1	3	0	2
CO5	2	3	2	0	0	0	3	0	2	1	3	0	2

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT1MN103	MAT1MN103					
Course Title	BASIC CALC	ULUS					
Type of Course	Minor						
Semester	Ι						
Academic	100 – 199						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Set Theor	ry including functions and the	heir algebraic o	perations.			
Course	This course pro	vides a comprehensive expl	oration of calcu	lus and its			
Summary	applications: It	begins with fundamental co	ncepts of graph	is, linear models,			
	inverse function	ns, laying the groundwork for	or calculus. Mo	dules II and III delve			
	into differentiat	tion techniques, including p	roduct and quot	ient rules, implicit			
	differentiation,	derivatives of inverse funct	ions, and applic	ations like extrema,			
	theorems (such	as Rolle's and Mean Value	Theorems), and	l curve sketching.			
	Module IV exp	Module IV explores integral calculus, covering the fundamental theorem of					
	calculus, numer	rical integration techniques	(like the Trapez	oidal Rule and			
	Simpson's Rule), and introduces hyperbolic	functions and	their derivatives and			
	integrals.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Acquire a basic concept of functions and their graphs.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Evaluate and solve calculus problems involving limits and continuity	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Evaluate the derivatives of functions using different methods.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO4	Apply the results in differential calculus to analyze the graph of a function.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO5	Understand the concept of integration.	U	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
* - Reme # - Factu Knowled	ember (R), Understand (U), Aj al Knowledge(F) Conceptual I lge (M)	oply (Ap), Ar Knowledge (nalyse (An), Ev C) Procedural H	raluate (E), Create (C) Knowledge (P) Metacognitive

Text B	ook	Calculus: Early Transcendental Functions (6edn), Ron Larson and	Bruce Ed	lwards
		Cengage Learning ISBN-13: 978-1-285-77477-0.	1	
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Foundations of Calculus: Graphs, Functions, and Limits		
	1	A quick review of sections 1.1 and 1.2 (not for external exam) Section 1.3 – Functions and their Graphs		
	2	Section 1.5: Inverse Functions - Inverse Functions, Existence of an Inverse Function		
I	3	Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number <i>e</i> , The Natural Logarithmic Function		
	4	Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics)	13	Min 15
	5	Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,		
	6	Section 2.3: Evaluating Limits Analytically - Dividing Out Technique, Rationalizing Technique, The Squeeze Theorem		
		Continuity, Derivatives, and Differentiation Rules		
	7	Section 2.4: Continuity and One-Sided Limits - Continuity at a Point and on an Open Interval, Properties of Continuity The Intermediate Value Theorem		
	8	Section 3.1: The Derivative and the Tangent Line Problem - The Derivative of a Function, Differentiability and Continuity		
п	9	Section 3.2: Basic Differentiation Rules and Rates of Change – The Constant Rule, The Power Rule, The Constant Multiple Rule, The Sum and Difference Rules	12	
	10	Section 3.2 : Basic Differentiation Rules – rest of the section.		Mn 15
	11	Section 3.3: Product and Quotient Rules and Higher Order Derivatives -		
	10	The Product Rule, The Quotient rule, Higher- Order Derivatives		
	12	Section 3.4 The Chain Rule.		
	15	Implicit and Explicit Functions Implicit Differentiation		
		Logarithmic Differentiation		
	Ar	oplications of Derivatives: Extrema, Concavity, and Curve Sketching		
	14	Section 4.1: Extrema on an Interval -		
		Extrema of a Function, Relative Extrema and Critical Numbers,		Min 15
		Finding Extrema on a Closed Interval		
ш	15	Section 4.2: Rolle's Theorem and The Mean Value Theorem - Rolle's Theorem, The Mean Value Theorem	12	
	16	Section 4.3: Increasing and Decreasing Functions and The First		
		Derivative Test - Increasing and Decreasing Functions. The First Derivative Test		
	17	Section 4.4: Concavity and the Second Derivative Test -		

		Concavity, Points of Inflection, The Second Derivative Test		
	18	Section 4.6: A summary of Curve Sketching -]	
		Analyzing the Graph of a Function		
		Integral Calculus: Fundamental Theorems and Applications"		
	19	Section 5.1: Antiderivatives and Indefinite Integration –		
		Antiderivatives, Basic Integration Rules, Initial Conditions and		
		Particular Solutions.		
	20	Section 5.3: Reimann Sums and Definite Integrals – Reimann		
IV		Sums, Definite Integrals, Properties of Definite Integrals.		
	21	Section 5.4: The Fundamental Theorem of Calculus -	11	Min 15
		The Fundamental Theorem of Calculus, The Mean Value Theorem		
		for Integrals.		
	22	Section 5.4: The Fundamental Theorem of Calculus -		
		Average Value of a Function, The Second Fundamental Theorem		
		of Calculus, Net Change Theorem		
		Open Ended		
	One	Sided Limits and Discontinuity, Derivatives of Inverse Functions,		
v	Deriv	vatives of Trigonometric functions, Limits at Infinity, Numerical		
	Integ	12		
Referen	ces:			
	I. Calc	culus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.	D	
4	2. Calc	culus & Analytic Geometry, (9/e), George B. Thomas & Ross L. Finney,	, Pearson	
	Pub.	lications		
	1 Calc	culus, (//e), Howard Anton, Biven, & Stephen Davis, Wiley India		
	+. Calc	culus, (//e)., Howard Anton, Biven, & Stephen Davis, Wiley India.		
	o. Calc	culus: Early Transcendentals, (4/e), Dennis G. Zill and Warren S. Wrigh	τ	

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.,

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	0	1	1	3	0	1
CO 2	3	1	3	0	1	1	3	0	1
CO 3	2	1	3	0	1	1	3	0	2
CO 4	2	1	3	0	1	1	3	0	2
CO 5	2	1	3	0	1	1	3	0	2

Programme	B. Sc. Mathematics	B. Sc. Mathematics Honours					
Course Code	MAT1FM105(2)						
Course Title	MATHEMATICS	FOR COMPETITIVE E	XAMINATIO	NS - PART I			
Type of Course	MDC						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	3	3	-	45			
Pre-requisites	Basic Arithmetic a	nd Computational Skill					
Course Summary	The course is designed to equip students with essential arithmetic and problem-solving skills required for competitive exams. It covers topics						
	fractions, and roots time-speed-distance	to more advanced concept e calculations, and problem	s like financial solving techni	mathematics, iques			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Apply concepts of the Number System, Number Series and Fractions to solve problems in competitive examinations by improving time management and problem- solving skills.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Use fast track techniques in HCF and LCM, Square root and Cube root and simplification, to solve problems in competitive examinations.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Identify and apply arithmetic operations like average, ratio and proportion and percentage to solve problems with focus on time management skills.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO4	Solve problems of financial Mathematics by managing time effectively	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

	Use shortcut techniques to	Ap	Р	Internal
	solve problems involving			Exam/Assignment/
CO5	work, time, speed, distance			Seminar/ Viva / End
	etc. with enhanced accuracy			Sem Exam
	and speed			
* - Rer	member (R), Understand (U), A	Apply (Ap), Anal	yse (An), Evaluate	(E), Create (C) #
- Factu	al Knowledge(F) Conceptual	Knowledge (C) P	rocedural Knowledg	ge (P) Metacognitive
Knowl	edge (M)			

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
		Fundamentals of Arithmetic		
Ι	1	Number System		
	2	Number Series		
	3	Simple and Decimal Fractions	9	Min 10
	4 HCF and LCM			
	5	Square root and Cube root		
Π		Basic Arithmetic Operations		
	6	Simplification		
	7	Average	0	Min 10
	8	Ratio and Proportion	9	
	9	Problems based on ages		
	10	Percentage		
III		Financial Mathematics		
	11	Profit and Loss		
	12	Discount		Nr: 10
	13	Simple Interest	9	IVIIN IU
	14	Compound Interest		
	15	Work and Time		

IV		Time, Speed, and Distance				
	16	Speed, Time and Distance				
	17Problems based on trains9Mi					
	18	Boats and Streams				
	19	Clock and Calendar				
V		Open Ended	9			
•		Open Linded	,			
	Mixture or Allegation, Partnership, Pipes and Cisterns					
Reference	es: 1.	Fast Track Objective Arithmetic, Rajesh Verma, Arihar	nt Publi	cations India		
limited, 20	018 (Pr	imary Reference).				

2. Objective Arithmetic for Competitive Examinations, Dinesh Khattar, Pearson Education, 2020.
 3. Quicker Objective Arithmetic, Dr Lal, Jain, Upkar's publication, 2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	0	3	0	3	0	0
CO 2	3	0	3	0	3	0	0
CO 3	3	0	3	0	3	0	0
CO 4	3	0	3	0	3	0	0
CO 5	1	0	2	0	2	0	0

Programme	B.Sc Mathematics Honours						
Course Code	MAT1MN104						
Course Title	MATHEMAT	ICAL LOGIC, SET THEO	RY AND CON	BINATORICS			
Type of Course	Minor						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Secondary Mathematics.						
Course Summary	This course explores mathematical logic, set theory, and combinatorics, covering fundamental ideas like propositions, logical equivalences, and quantifiers. It introduces set theory concepts such as sets, operations with sets, and cardinality. Additionally, it delves into functions and matrices, along with topics like permutations, combinations, and discrete probability in combinatorics.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Apply the concepts of propositional	Ар	Р	Internal
	logic and equivalences			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO2	Understand basics of set theory and	U	С	Internal
	its operations.			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO3	Understand the concept of	U	Р	Internal
	functions			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO4	Apply the concept of matrices and	Ар	Р	Internal
	its properties to carry out various			Exam/Assignment/
	operations on matrices			Seminar/ Viva / End
				Sem Exam

CO5	Implement the concept of	Ap	Р	Internal		
	Combinatorics.			Exam/Assignment/		
				Seminar/ Viva / End		
				Sem Exam		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Know	ledge (M)					
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitiv Knowledge (M)						

Text: Dis ISBN: 97	crete M 8-0124	lathematics with Applications, (1/e), Thomas Koshy, Academic 211803.	Press (2	2003),
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		Mathematical Logic		
	1	1.1 Propositions: Conjunction, Disjunction.		
	2	1.1 Propositions: Converse, Inverse and Contrapositive.		
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).		
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)	15	Min. 15
	5	1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)		
Π		Set Theory		
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).		
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).		

	9	2.2 Operations with Sets $-$ up to and including example 2.21.		Min.
			12	15
	10	2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).		
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).		
III		Functions and Matrices		
	12	3.1. The Concept of Functions - up to and including example3.2	10	Min.
	13	3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional).		15
	14	3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).		
	15	3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).		
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).		
IV		Combinatorics and Discrete Probability		
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)		
	18	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)		
	19	6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)	11	Min. 15
	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)		
	21	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)		
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)		

V		12					
	Open Ended						
 Basic calculus concepts such as limits, continuity, differentiation and integration. Relations and Digraphs, Conditional Probability, Multiplication theorem of Probability, Dependent and Independent Events, Probability Distributions, Correlation and Regression, Bisection Method, Regula-Fals Method, Gauss-Jordan Method. 							
Referenc	es:						
1. D	1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).						
2. D	2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).						
3. D	iscrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (20	011).					

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	1	2	3	2	1
CO 2	3	0	0	1	3	0	1
CO 3	3	0	1	1	3	0	2
CO 4	3	0	0	1	3	0	1
CO 5	3	0	1	2	3	0	2